
The “Jump-counting” Skipfield Pattern

A replacement for boolean skipfields yielding O(n) time
complexity for iteration over unskipped elements

Matthew Bentley

mattreecebentley@gmail.com
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1 Introduction

In many areas of computer science, but in particular within video game engines,
there exist scenarios where boolean fields are used to indicate items which are no
longer active or usable instead of actually erasing or removing these elements,
as erasure tends to come with one or more side-effects depending on the type
of data container involved. Subsequently during iteration and processing, this
boolean field is checked so as to skip over and ignore the elements flagged as
inactive. A simple example could be a raw array of data for individual objects
in a video game with an additional boolean field named “active” within each
object, where the “active” flag is set to false when that object is destroyed in
the game. Objects with a false “active” flag would then be skipped over for
subsequent processing.

There are three advantages of such a technique. Firstly, with a primitive con-
tainer such as an array, actual removal of an element from active memory may not
be possible. Secondly, if a more complex container designed for iterative speed is
used (such as a dynamic array or queue) then actual erasure of elements tends
to have strong performance penalties [1, Standard Template Library, p. 164]
due to the reallocation of subsequent elements (to preserve data contiguity in
memory). Thirdly, the latter process of reallocation also invalidates pointers to
elements within the container [2, Sequential Containers, p. 485], which is of con-
cern in highly modular or object-oriented code, of which game engines are often
comprised. To work around these problems the aforementioned active/inactive
boolean skipfield is often implemented and pointer/iterator validity thereby pre-
served, along with iterative processing speed.
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(Note: highly-contiguous storage containers such as C++’s std::vector, std::deque
and arrays tend to be preferred in high-performance programming over non-
contiguous storage methods such as linked-lists and maps, despite the fact that
the latter do not tend to have the above side-effects when erasing. This is due to
the poor CPU cache performance associated with non-contiguous memory storage
during iteration on modern CPU’s [4, p.44].)

This technique is simple and often effective, but can be inefficient for any
container with large numbers of consecutive “inactive” elements, as iteration
over these requires checking a boolean field for each inactive element. An ideal
solution would simply skip from one “active” element to the next in a single step.
As soon as some elements in the container are made inactive, the time complexity
for iterating from one active element to the next becomes O(random) instead of
O(1), as there is no way for the program to know how many inactive elements
are present between two active elements without consulting the boolean field
for each and every element. Depending on the number and location of container
erasures there could be as few as one, or as many as “container size - 2”, boolean
checks between each “active” element in the container.

A jump-counting skipfield negates the inefficiencies of this approach, giving
O(1) amortized time complexity for linear iterative traversal from one active
element to the next in a container, without creating significant additional com-
putational overhead. It is a numeric sequence which indicates both when to skip
over elements and how many elements to skip over in any sequence of elements.
It is most obviously useful in implementing a pointer-stable/iterator-stable data
container, where it can indicate sequences of erased elements to skip over without
necessitating reallocation of non-erased elements and thus causing performance
degradation and index/pointer invalidation, as described above. It can also be
directly implemented in any computational engine without a container object,
for example to replace the boolean field which is described above as an indication
of video game objects which are destroyed.

Another application is the indication of temporarily-inactive objects, a spe-
cific example for which is explored in more detail in section 5, “Additional ar-
eas of application and manipulation”. Ultimately the jump-counting pattern, as
with a boolean pattern, can be used to describe any binary aspect of any se-
quence of objects, regardless of whether that binary aspect is active/inactive,
gray-scale/colored, living/dead or non-erased/erased. What it facilitates is the
skipping over of elements which fit one of the two states. Hence an alterna-
tive name for the pattern is a ’Theyaton’ skipfield, an acronym for ’Traversal
of homogeneous elements yielding amortized time = O(n)’, where any one of
the binary states named above describes an aspect by which the non-skipped
elements can be deemed homogeneous. For the purposes of simplicity we will
discuss the jump-counting skipfield pattern in the context of implementation
within a data container where a skipped element indicates an erased element
and a non-skipped element indicates a non-erased element.

There is a simple variant of the pattern which allows only for the erasure
of elements, and an advanced pattern which allows for both erasure of elements
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and reuse of erased-element locations upon subsequent insertion. Colony1, the
data container for which this pattern was developed, utilizes linked chains of
increasingly-large element memory blocks with accompanying advanced jump-
counting skipfields. This allows the container to maintain pointer/iterator sta-
bility during both insertion and erasure while maintaining fast iterative per-
formance, as well as allowing it to reuse erased element memory space. But a
programmer implementing a custom solution (using arrays with skipfields, for
example) might, depending on their circumstances, choose the simple pattern as
it has a very small erasure performance advantage.

1.1 Pre-existing Research

A review of the literature has shown no similar pre-existing work on replacements
for boolean skipfields. Exhaustive searching of scholarly journals across 8 high-
profile computer science journal aggregates did not yield similar patterns, nor
did it show any existing research into the use of boolean fields to indicate element
erasure in data sets. One possible explanation for this is that interaction between
video game development, where the boolean technique described is often used,
and academia, is limited. Another explanation may be that this is a development
which primarily arises in environments with a focus on high performance, where
the most optimal solutions are typically hardware-bound and as such have a
lesser focus on solutions for arbitrary hardware and generalized computational
science.

2 The Simple Jump-counting Pattern

2.1 Basic notation

A jump-counting skipfield is always an array (or extensible container) of an un-
signed integer type. This type must be of sufficient bit-depth to describe the
number of elements that can be potentially stored within the memory block
it is associated with. So a block large enough to store 65536 elements would
require a skipfield made up of 16-bit unsigned integers, while a memory block
large enough to store 4,294,967,296 elements would require a skipfield of 32-bit
unsigned integers. All non-erased elements are notated with zero, so if you had
a set of ten non-erased elements in a memory block, the block’s corresponding
skipfield (S) would be:

S = (0 0 0 0 0 0 0 0 0 0)

Any non-zero value indicates erasure. If a singular element is erased and has no
consecutive erased elements it is notated with “1”:

1 http://www.plflib.org/colony.htm
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S = (0 0 0 0 0 1 0 0 0 0)

From this point onward we will refer to locations within the skipfield as
“nodes” and sequences of consecutively erased elements (as notated in the skip-
field) as “skipblocks”. Below we show a skipfield attached to a data container
where the 3rd, 4th, 5th and 6th elements have been erased. The first node indi-
cating a skipblock (eg. the first “4” in the example below) is called the “start
node”. The last node in that skipblock is called the “end node” (eg. the last
“4” in the example below). The values of both start and end node are set to
the number of elements which need to be skipped. In the solo erasure example
above, the “1” is both the start and end node of a skipblock.

S = (0 0 4 0 0 4 0 0 0 0)

2.2 Iteration

To iterate across a sequence of elements utilizing a jump-counting skipfield to
identify erased elements, an iterator must keep track of both the element it’s
pointing to and that element’s corresponding skipfield node. The skipfield node’s
index will always correspond to the element’s index ie. element[5] is always as-
sociated with skipfield[5]. Because of the index association an iterator only tech-
nically need keep track of the index number (i), but for performance reasons we
might choose an implementation using both a pointer to the element array (e)
and a pointer to the skipfield array (s).

If we use the pointer approach, to advance an iterator by one we would:

1. increment both the element index (e) and the skipfield node index (s) by
one, then

2. add the value of the number pointed to by the skipfield pointer (∗s, which is
the size of the additional increment necessary to reach the next non-erased
element) to both the element pointer and to the skipfield pointer itself.

ie.
s = s + 1
e = e + 1 + ∗s
s = s + ∗s

Alternatively if we use the index number iterator approach, we can:

1. increment the index number (i) by one, then
2. add the value of the skipfield at index i (Si) to the index number (i).

ie.
i = i + 1
i = i + Si
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Regardless of whether an index or pointer implementation is utilized, the
value of the number stored in the skipfield node is the number of additional
units to advance by in a single iterative step. This is also equivalent to the num-
ber of consecutive erased elements at that point in the skipfield. For the purpose
of simplicity, we will discuss only the index implementation of the jump-counting
pattern for the remainder of this document. Below is a demonstration of a single
iterative step over the skipfield example shown earlier:

(Notes: in all examples, ↓ indicates the skipfield node corresponding to the current
index number i. Index enumeration starts from 1, to make the examples easier
to understand, rather than from 0 as would be implemented in most program-
ming languages. Lastly, we will skip the S = () array notation for all subsequent
examples for the purpose of visual clarity.)

Before incrementing:

↓
0 0 4 0 0 4 0 0 0 0

i = 1

Increment by one:

i = i + 1

i = 2, Si = 0

i = i + Si

i = 2, Si = 0

After incrementing:

↓
0 0 4 0 0 4 0 0 0 0

Increment by one again:

i = i + 1

i = 3, Si = 4
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i = i + Si

i = 7, Si = 0

After incrementing again:

↓
0 0 4 0 0 4 0 0 0 0

This also works when reverse-iterating, in which case you:

1. decrement the index (i) by one, then

2. subtract the value of the skipfield node at index (Si) from the index.

Once again the second number subtracted is the number of elements skipped in
that decrement. Here is an example using the same skipfield pattern as above:

Before decrementing:

↓
0 0 4 0 0 4 0 0 0 0

(i = 8)

Decrement by one:

i = i− 1

i = 7, Si = 0

i = i− Si

i = 7, Si = 0

After decrementing:

↓
0 0 4 0 0 4 0 0 0 0
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Decrement by one again:

i = i− 1

i = 6, Si = 4

i = i− Si

i = 2, Si = 0

After decrementing again:

↓
0 0 4 0 0 4 0 0 0 0

2.3 Erasure

If an element is erased we check the nodes to the left and to the right of its
corresponding skipfield node:

(note: ∗ indicates nodes whose values we are assessing)

∗ ↓ ∗
0 0 0 0 0 0 0 0 0 0

If there is an erased node to the left, that node is the end node of a skipblock
on the left. If there’s an erased node to the right, that node is the start node of
a skipblock on the right. The central premise of erasure within a jump-counting
skipfield is that both the start and end nodes of a skipblock count the number
of nodes to skip when encountering the skipblock during iteration, so if we know
where the start node is, we will also know where the end node is and vice-versa.
We can therefore update both if we know the location and value of one of them.

Once we have checked the value of the nodes to the left and right, there are four
scenarios:

1. both left and right are zero

2. left is non-zero and right is zero

3. left is zero and right is non-zero

4. both left and right are non-zero

We will now examine how each of those scenarios is to be handled.
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Scenario 1: Both left and right are zero

We set the value of the current skipfield node to one. This indicates a single el-
ement erasure with no consecutive erased elements. No further action is required.

(note: in this context ↓ indicates the skipfield node corresponding to the con-
tainer element we’re erasing)

Before erasure:

↓
0 0 0 0 0 0 0 0 0 0

Erasure:

Si = 1

After erasure:

↓
0 0 0 0 0 0 1 0 0 0

Scenario 2: Only left is non-zero

If only the left-hand node is non-zero, we set the value of the current node to
the value of the left-hand node, then increment it by one. The current node is
now the new end node for the preceding skipblock. We then subtract the value
of the left-hand node from the current node’s index to find the index of the start
node’s, then set the start node’s value to the current node’s value (or increment
the start node by one). We do not change the value of the left-hand node (the
prior end node).

Before erasure:

↓
0 0 0 3 0 3 0 0 0 0

Erasure:

Si = 1 + Si−1

j = i− Si−1

Sj = Si
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After erasure:

↓
0 0 0 4 0 3 4 0 0 0

Scenario 3: Only right is non-zero

If only the right-hand node is non-zero, we make the current node the start node
of the skipblock to the right by making it equal to the right-hand node, then
incrementing it by one. Then we add the right-hand node’s value to the current
node’s index to find the end node, and set the value of the end node to the same
value as the current node.

Before erasure:

↓
0 0 0 2 2 0 0 0 0 0

i = 3

Erasure:

Si = 1 + Si+1

j = i + Si+1

Sj = Si

After erasure:

↓
0 0 3 2 3 0 0 0 0 0

Scenario 4: Both left and right are non-zero

If both left-hand and right-hand nodes are non-zero, then the current node is
between two separate skipblocks, one to the left and another to the right. In
this case we begin by subtracting the left-hand node’s value from the current
node’s index number to find the left skipblock’s start node’s index. We increment



10 Matthew Bentley

the value of that start node by one plus the value of the node to the right of
the current node. Then we add the same right-hand node’s value to the current
node’s index to find the index of the end node for the skipblock on the right.
Lastly we set the value of that end node to the same value as the left skipblock’s
start node.

Before erasure:

↓
0 2 2 0 3 0 3 0 0 0
i = 4

Erasure:

j = i− Si−1

j = 4− S3 = 2

k = i + Si+1

k = 4 + S5 = 7

Sj = Sj + 1 + Si+1

S2 = S2 + 1 + S5 = 6

Sk = Sj

S7 = S2 = 6

After erasure:

↓
0 6 2 0 3 0 6 0 0 0

2.4 Summary

All of these operations are straightforward but the result does not support the
reuse of memory space from previously-erased elements. This is what the ad-
vanced pattern facilitates. Because the simple pattern involves fewer calculations
than the advanced pattern however, it could be slightly faster in a use-case where
reuse of memory space is either not useful or not practicable.
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3 The Advanced Jump-counting Pattern

3.1 Basic notation

This does not differ from the simple pattern, except for the fact that the nodes
between the start and end node in a skipblock cannot be zero and instead follow
a sequential increment-by-one pattern as the example below demonstrates:

0 0 4 2 3 4 0 0 0 0

The formation of this pattern takes place in section 3.3 below, while its pur-
pose becomes apparent in the subsequent restoration or “reuse” section, 3.4.
What the above pattern communicates is the index of any given node within
the skipblock itself, which also tells us where to find the the start node of the
skipblock. The node with a value of 3 in the above example is the third in the
skipblock, meaning the start node is two nodes away. From the value of the
start node we can also find the end node, and as we will see, that information is
sufficient for us to be able to update the entire skipblock.

3.2 Iteration

The procedures for iteration do not differ between the simple and advanced
patterns, for either increments or decrements.

3.3 Erasure

Erasure in the advanced pattern involves slightly more work than the simple
pattern but for the most part is similar. As in the simple pattern, if an erasure
is made to the current element, we check the skipfield nodes to the left and to
the right of the corresponding skipfield node.

Scenario 1: Both left and right are zero

As with the simple pattern, we set the current node’s value to one.

Scenario 2: Only left is non-zero

Once again the procedure is exactly the same as in the simple pattern. We set
the value of the current node to the value of the left-hand node, then increment
by one. We then subtract the value of the left-hand node from the current node’s
index number to find the skipblock’s start node, then set the start node to the
same value as the current node.
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Scenario 3: Only right is non-zero

Here we take the value of the right-hand node and store it as x, then make the
current node’s value x + 1, and it becomes the start node of the skipblock to
the right. So far this is the same as the simple pattern. But instead of finding
the end node and updating it as we would in the simple pattern, we update the
value of each node to the right of the current node, starting from a value of two
and incrementing by one per node, decrementing x by one per node, stopping
when x is zero.

Before erasure:

↓
0 0 0 3 2 3 0 0 0 0

Erasure:

x = Si+1

x = 3

Si = x + 1
Si+1 = 2
x = x− 1

x = 2

Si+2 = 3
x = x− 1

x = 1

Si+3 = 4
x = x− 1

x = 0

After erasure:

↓
0 0 4 2 3 4 0 0 0 0
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We can now see the increment-by-one pattern noted earlier.

Scenario 4: Both left and right are non-zero

First we take the value of the right-hand node, store it as x and increment it
by one, and take the value of the left-hand node and store it as y. We subtract
y from the current node’s index to find the index of the left skipblock’s start
node, increment this start node by x, then add one to y. Then, starting from the
current node and continuing to the right, we set every node to y, incrementing y
by one for each node, decrementing x by one per node, stopping when x is zero.

Before erasure:

↓
2 2 0 3 2 3 0 0 0 0

Erasure:

x = 1 + Si+1

y = Si−1

x = 4, y = 2

Si−y = Si−y + x
y = y + 1

y = 3

Si = y
y = y + 1
x = x− 1

x = 3, y = 4

Si+1 = y
y = y + 1
x = x− 1

x = 2, y = 5

Si+2 = y
y = y + 1
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x = x− 1

x = 1, y = 6

Si+3 = y
y = y + 1
x = x− 1

x = 0, y = 7

After erasure:

↓
6 2 3 4 5 6 0 0 0 0

Again we can see the increment-by-one pattern, which will become useful in
the reuse section below.

3.4 Reuse of erased-element memory

If we want to insert into the container and reuse memory space from an element
that was previously erased, we need a mechanism for updating the skipfield to
reflect this change to the non-erased/erased status of the element, while simulta-
neously keeping the skipfield valid for use during iteration. Consider the following
example: I wish to reuse the memory space of a previously-erased element at in-
dex 4 in a given container, and to indicate this in the skipfield I naively set the
element’s corresponding skipfield node to zero. Here is what will happen:

Before reuse:

↓
6 2 3 4 5 6 0 0 0 0

(Incorrect) reuse:

Si = 0

After reuse:

↓
6 2 3 0 5 6 0 0 0 0
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With this result, if you subsequently iterated over the data from the beginning,
the reused element’s location would be skipped over. And if you began iteration
from the reused element’s location, you would skip over non-erased elements.
Here’s an example of the latter using the result above:

Before increment:

↓
6 2 3 0 5 6 0 0 0 0

i = 4

Increment by 1:

i = i + 1

i = 5

i = i + Si

i = 10

After increment:

↓
6 2 3 0 5 6 0 0 0 0

This is obviously incorrect. To correctly update the skipfield when reusing erased
locations we need to check the value of the skipfield nodes both to the left and
right of the skipfield node corresponding to the erased element whose location
we want to reuse, similar to the process we use during erasure. For example:

∗ ↓ ∗
0 0 0 4 2 3 4 0 0 0

As noted in section 3.1, for any skipblock, the value of any node after the start
node indicates that node’s index within the skipblock, which enables us to find
the start node from any node in the skipblock. Once we know the start node’s
value we can also find the end node’s value, and thereby correctly update the
entire skipblock. Once again we have four scenarios: either both left and right
node values are zero, left is non-zero and right is zero, left is zero and right is
non-zero, or both left and right are non-zero. Here’s how we handle those sce-
narios in this case:
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Scenario 1: Both left and right are zero

We set the value of the current node to zero. No further updates are necessary.

Scenario 2: Only left is non-zero

This indicates that the current node is the end node of a skipblock on the left. In
this case we take the current node’s value and store it (x), subtract one from x,
then subtract x from the current node’s index to find the index of the skipblock’s
start node. We then set the start node’s value to x and the current node’s value
to zero.

Before reuse:

↓
0 0 0 4 2 3 4 0 0 0

i = 7, Si = 4

Reuse:

x = Si − 1
j = i− x
Sj = x
Si = 0

After reuse:

↓
0 0 0 3 2 3 0 0 0 0

Another example - before reuse:

↓
0 2 2 0 0 0 0 0 0 0

i = 3, Si = 2

After reuse:

↓
0 1 0 0 0 0 0 0 0 0
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Scenario 3: Only right is non-zero

This indicates that the current node is the start node of a skipblock continuing
to the right. First we store the value of the current node as x and decrement
x by one. We then set the value of the current node to zero and the value of
the right-hand node to x, and subsequently decrement x by one again. Then,
starting with the node after the right-hand node, we update the values of all
subsequent nodes to the right, starting with a value of two and incrementing by
one per node, decrementing x by one per node until x is zero. Example:

Before reuse:

↓
0 0 0 4 2 3 4 0 0 0

Reuse:

x = Si − 1

x = 3

Si = 0
Si+1 = x
x = x− 1

x = 2

Si+2 = 2
x = x− 1

x = 1

Si+3 = 3
x = x− 1

x = 0

After reuse:

↓
0 0 0 0 3 2 3 0 0 0
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Scenario 4: Both left and right are non-zero

In this scenario the current node is inside a skipblock, but neither at the be-
ginning nor the end of it. The end result of the operation must be to split this
singular skipblock into two. For the first phase of the transformation we store
the current node’s value as y and subtract y − 1 from the current node’s index
to find the index of the start node. We store the value of the start node as x,
decrement x by y and set the value of the right-hand node to x.

Before:

↓
6 2 3 4 5 6 0 0 0 0

i = 4, Si = 4

Reuse (first phase):

y = Si

y = 4

j = i− (y − 1)

j = 1

x = Sj − y
Si+1 = x

x = 2

After first phase:

↓
6 2 3 4 2 6 0 0 0 0

In the second phase we set the start node’s value to y − 1, decrement x by one
and set the value of the current node to zero.
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Reuse (second phase):

Sj = y − 1
x = x− 1
Si = 0

x = 1

After second phase:

↓
3 2 3 0 2 6 0 0 0 0

The right-hand node is now the start node of a new skipblock continuing to
the right, thus we have split the original skipblock into two. In the third phase
we update the values of each node to the right of the right-hand node, beginning
with a value of two and incrementing by one per node, decrementing x by one
per node until x is zero. If the value of x is already zero at this stage no update
occurs. In the case of the above example, only a single update would take place:

Reuse (third phase):

Si+2 = 2
x = x− 1

x = 0

After third phase:

↓
3 2 3 0 2 2 0 0 0 0

Reuse of the erased node is complete at this point and the skipfield can be
iterated over correctly in both directions.
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4 Performance results

In this section we will benchmark (in C++) the performance of a colony con-
tainer using a boolean field to indicate erasure, versus a colony container us-
ing a jump-counting skipfield to indicate erasure, and as a reference point, a
std::vector. For brevity we will henceforth refer to the colony using the boolean
skipfield as a “boolean colony”, and the colony using the jump-counting skipfield
as a “jump-counting colony”. The std::vector will exhibit slow erasure and inser-
tion speeds due to its need to reallocate elements to ensure element contiguity.
Both colony types will exhibit fast insertion (due to the utilization of a multiple-
memory-chunk allocation strategy, which does not necessitate the reallocation
of elements once capacity is exceeded) and erasure times (due to utilization of a
skipfield rather than reallocating all elements after the erased element) but cor-
responding slower iteration times (due to the partially non-contiguous element
allocation caused by the multiple memory chunks, and the skipfield use).

For both colonies, each internal memory chunk has its own individual skip-
field. The size of the boolean colony’s internal memory chunks is limited only
by the amount of memory available to the system. The jump-counting colony’s
skipfield consists of a series of 16-bit unsigned integers, and this reduces the
maximum size of a colony’s internal memory chunks to 65535 elements each. Re-
ducing the skipfield bit-depth means that more of the skipfield can then fit into
the CPU’s cache at once, which generally increases performance. The boolean
colony’s skipfield consists of a series of 8-bit unsigned integers, as this is the
lowest integer size that a x86 CPU can access without bit manipulation (which
would result in decreased performance on this architecture).

The test system is an Intel E8500 CPU with 8GB ram, running GCC 5.1
x64 as the compiler. Build settings are ”-O2;-march=native;-std=c++11;-fomit-
frame-pointer”. Results for Visual Studio 2013 are similar. Tests are based on a
sliding scale of number of runs vs number of elements, so a test using only 10
elements in a container will use 100,000 runs and average the results, whereas a
test with 100,000 elements will use 10 runs and average the results. This tends to
give reliable averages without requiring overly long test times. The insertion test
measures inserting single elements sequentially, as opposed to inserting multiple
elements at once. In the erasure tests we iterate through the container elements
and erase single elements at random. A C++ “remove if” pattern might be
more common in this test if we were solely processing the std::vector, but such
a pattern makes no difference to colony erasure performance, and so is omitted.

In Figs. 1 and 2 we can see that both colonies perform significantly better
than std::vector during insertion, and that the colony with the boolean skip-
field slightly outperforms the colony with the jump-counting skipfield, due to its
simpler procedures. At this point no erasures have occurred to either container,
hence no changes to the colony skipfields have taken place.

In Fig. 3 std::vector comes in first place, iterating approximately twice as
fast as both colonies on average, with the jump-counting colony second and the
boolean colony third, 15% slower than the jump-counting colony on average.
At this stage the difference in speed between the two colonies is primarily due
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Fig. 1. Duration to insert all elements

Fig. 2. Duration to insert all elements - logarithmic scale
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Fig. 3. Duration to iterate over elements, prior to erasures

to the more complicated branching code necessary to iterate over the boolean
skipfield compared to the simple addition needed for iteration over the jump-
counting skipfield. Now we will measure erase performance when iterating over
the containers and erasing 25% of all elements at random.

As shown in Figs. 4 and 5, std::vector has predictably poor erasure perfor-
mance due to its need to reallocate all the subsequent elements after each erased
element, in order to preserve element contiguity , and also due to the random
erasure pattern. Both colony containers perform equally well due to a lack of
reallocation, requiring only a fraction of std::vector’s duration to complete. Now
let’s see how iteration performance has altered post-erasure.

In Fig. 6 we immediately see a performance advantage for the jump-counting
colony over the boolean colony. The jump-counting colony’s performance in-
creases due to the reduced number of elements and skipfield nodes it is required
to read, but the boolean colony’s performance almost halves when compared to
the iteration results prior to erasures. There are two reasons for this. Firstly,
the boolean colony must check the value of each skipfield node to determine the
erased status of the corresponding element, and hence has no ability in the case
of multiple consecutive erased elements to directly skip from one non-erased ele-
ment to the next. The jump-counting colony has this ability, and so its iteration
speed is greatly increased by comparison.

The second reason is that in the first iteration test there were no erased ele-
ments. And so, while the boolean colony had branching code (to enable skipping
any individual element when its corresponding skipfield node indicated erasure),
the CPU’s branch prediction could lower the performance cost of the branching
code significantly [5]. This is because there was only one path for the branch
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Fig. 4. Duration to erase 25% of all elements

Fig. 5. Duration to erase 25% of all elements - logarithmic scale



24 Matthew Bentley

Fig. 6. Duration to iterate after erasing 25% of all elements

to take at this point due to a lack of erasures. But with 25% of all elements
erased, the iterator will encounter a skipped element 25% of the time, also ren-
dering the branch prediction which the CPU makes wrong 25% of the time and
dramatically increasing the performance loss from the same branching code. To
further explore the impact of these factors on performance, we will now increase
the erasure percentage to 50% of all elements in the original containers.

In Fig. 9 the boolean colony’s performance is worse than in the 25% erasure
iteration benchmark, because with 50% of all elements erased at random there
is no opportunity for the CPU’s branch prediction to be correct any more than
50% of the time. By contrast the jump-counting colony’s iteration performance
continues to scale proportionally to the number of erasures, as does std::vector’s.
Now we will erase 75% of all elements in the original containers.

Both the jump-counting colony and std::vector’s iterative performance in Fig.
12 continue to scale proportionately according to the percentage of erasures.
The boolean colony in this case performs slightly better than in the 25% erasure
iteration test, the reason being that with 75% erased elements there are 25% non-
erased elements, so the CPU’s branch prediction can work just as effectively, but
in this case only 25% of the original elements are having their values read, as
opposed to the 75% being read in the 25% erasure iteration test.

Overall we can see that both the ability to skip directly from each active
element to the next, and the lack of reliance on CPU branch prediction, play
large roles in the performance of a jump-counting pattern compared to a sim-
ple boolean pattern. On a processor without branch prediction, we can expect
the boolean pattern to perform worse in the majority of cases, with average
performance being closer to that of the 50% erasure iteration test.
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Fig. 7. Duration to erase 50% of all elements

Fig. 8. Duration to erase 50% of all elements - logarithmic scale
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Fig. 9. Duration to iterate after erasing 50% of all elements

Fig. 10. Duration to erase 75% of all elements
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Fig. 11. Duration to erase 75% of all elements - logarithmic scale

Fig. 12. Duration to iterate after erasing 75% of all elements
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5 Additional areas of application and manipulation

While this document’s primary focus is on the application of a jump-counting
skipfield in the context of a data container, in this section we will outline some
other potential applications.

5.1 Available/busy unit indication

As noted earlier in section 1, the skipfield pattern can be used to iterate over
any sequence of elements where the decision to skip a given element depends on
the answer to a specific boolean question, regardless of whether that question is
“is the object black or white” or “is the object erased or not”, or “is the object
available or unavailable”, etcetera. It is reasonable to assume that there exist
real world scenarios where data in a sequence might not actually be erased but
instead be made temporarily inactive or unavailable, and where the application is
required to iterate over the currently-active or available data in a performance-
friendly fashion. The advanced jump-counting skipfield pattern is a good fit
for such usage cases, enabling fast iteration over individual objects while not
significantly impacting the performance of object activation/deactivation when
compared to a boolean field.

Take for example a large data center, with perhaps 1,000,000 hard drives
in various configurations, all being accessed asynchronously by various sources.
To achieve maximum performance and lowest-possible latency, we would ideally
want to assign each task to a hard drive which is not currently being utilized,
rather than adding requests to a queue for a particular hard drive; though the
latter may become necessary if the data center’s system was to be saturated
with requests. The timing for when two similar requests actually complete on
each individual hard drive is also asynchronous, due to the nature of hard drive
storage. For this reason a first-in-first-out strategy for determining available
hard drives is not technically feasible, and we would instead be inclined to use
a randomly-updatable skipfield, to indicate available/busy status for each hard
drive.

If we use a simple boolean field to indicate which hard drives are currently
available or busy, this presents an immediate problem: for any given request, we
could be making anywhere between 1 and 999,999 boolean field checks in order
to find an available hard drive. This is obviously insufficient as: (a) the time
complexity is O(random), making latency highly variable and, (b) the solution
is slow. If we use an advanced jump-counting skipfield pattern instead, we will
only ever require a single field check to find the next available hard drive, in
other words an operation with O(1) time complexity. And while the operations
to switch any given skipfield node between “busy” and “available” will take
longer when compared to a boolean state change, the overall time-saving will
still be in the factors of 10, as the benchmarks in section 4 show, due to the
increased speed of finding an available drive with a jump-counting skipfield.

In extreme cases where almost all of the available hard drives are busy, the
above solution could result in slow state change operations, as depending on the
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location of the changed node and the saturation of requests, anywhere between
1 and 999,999 skipfield nodes might need to be updated. Because these updates
don’t involve significant branching, it is expected that the performance cost of
this would still be low. But to ameliorate any performance detriment we could
split the original group of 1,000,000 drives into smaller clusters of 65536 drives
and create individual skipfields for each group. This would reduce the necessary
number of potential skipfield writes required for any given state change operation
(from busy to available or from available to busy), and also reduce the necessary
skipfield bit-depth from 32-bit to 16-bit, resulting in potentially faster writes and
reads as more of the skipfield will fit into the CPU’s cache. The jump-counting
colony container used in the benchmarks within section 4 also uses this strategy.

This increases the potential number of reads from the skipfield groups (in
order to find an available hard drive) from 1 to between 1 and 16. But it reduces
the maximum potential number of writes to the skipfield (in the event of a hard
drive state change) from between 1 and 999,999 32-bit writes, to between 1 and
65535 16-bit writes. To further reduce the potential number of reads down to 2,
we could also apply a jump-counting skipfield to the collection of groups itself,
using the binary state of “all drives busy”/“some drives available”. Thus the first
read would determine the first group with available drives, and the second would
find the first available hard drive within that group. This subdivision could be
taken further still, creating 3907 groups containing 256 hard drives each, using 8-
bit skipfields within the groups to indicate available drives, and a 16-bit skipfield
across the groups to indicate whether any given group has an available drive.

This last subdivision would keep the number of reads necessary to find an
available drive at 2, but would reduce the potential number of writes required for
a drive state change from between 1 and 65535 16-bit writes, to between 1 and
256 8-bit writes (and 1 potential 16-bit write if the entire group is saturated). The
greater the subdivision, the more operations can occur simultaneously within
the entire system, because each group has its own skipfield which is independent
of the other groups. Therefore mutexes [6] can be applied to individual groups
rather than to the data structure as a whole when processing multiple hard drive
requests synchronously. Benchmarking would be necessary to find the optimal
strategy in any given case and on any given platform.

A keen observer might note that a similar strategy could be applied to a
boolean skipfield, by subdividing recursively into 16 groups of 65535 drives,
then dividing each group into 256 sub-groups of 256 drives, and using boolean
flags at both the group and subgroup levels to indicate which groups/sub-groups
have available drives left. This approach does not have quite the same level of
read-reduction as the jump-counting skipfield approach, reducing the maximum
number of reads to find an available drive from 999,999 32-bit reads to 528 8-bit
reads (16 (group level) + 256 (sub-group level) + 256 (drive level)). But it also
does not have the write costs of the jump-counting approach; a maximum of 3
8-bit writes is necessary for a drive state-change in a boolean skipfield using 3
levels of subdivision, versus a potential maximum of 256 8-bit writes for a single
drive state change in a jump-counting skipfield.
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However the benchmarks in section 4 above clearly show that even when
erasing 75% of all available elements at random for large sets of data, the perfor-
mance impact is low and does not affect overall erasure performance compared
to a boolean skipfield. Moreover the benchmarks also show that the branch-
ing necessitated by a boolean skipfield has a significant impact on performance
even when the number of reads is low. Based on this evidence, the performance
advantage would still belong to the jump-counting skipfield.

5.2 Compression

In cases where the jump-counting pattern is used to indicate a binary aspect of
elements which is not erasure/non-erasure, there could conceivably be a necessity
to store the skipfield somewhere other than in active memory, for example when
exiting a program. In that case we might choose, either for performance reasons
or due to storage limitations, to compress the skipfield pattern as opposed to
storing it raw. Any skipfield can be seen as a series of alternating runs of active
(zero) and inactive (non-zero) elements ie. a non-zero run always follows a zero
run, and vice-versa. In the context of a jump-counting skipfield the length of a
run will never be larger than the largest possible number afforded by the bit-
depth of the skipfield, as that number must match the maximum number of
elements in the sequence as described in section 2.1.

Hence, one compression strategy might take the form of a series of unsigned
integers of the same bitdepth as the original skipfield. The first number in the
compressed skipfield indicates whether the first run in the sequence is a zero or
non-zero run, accordingly noting either 0 or 1. Each subsequent number notes
the number of elements in the alternating zero/non-zero runs respectively. Tak-
ing the following skipfield:

3 2 3 0 2 2 0 0 0 0 3 2 3

We would compress by starting with “1” to indicate the non-zero nature of
the first run, then follow with the length of each run in sequence. We end up with:

1 3 1 2 4 3

This is obviously a form of run-length encoding albeit without the need
to specify the value of the run whose length we are denoting (aside from the
first run’s value). We can perform subsequent compression on this field which
would typically result in greater compression than if we had simply compressed
the original field. For example, the sequence above could subsequently then be
Huffman-coded[8] to produce a compressed skipfield of 12 bits. Because the orig-
inal sequence in this case is so short, once we added a Huffman table for decom-
pression, the resulting compressed pattern would be larger than if we had simply
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binary-encoded the original field as a boolean sequence with a bit-depth of 1.
But for any field of substantial length, the compressed solution would be smaller.

As an extreme example, consider a data set with 100,000 elements and al-
ternating patterns of 50 erased and 50 non-erased elements. Using the above
technique, the original skipfield of 100,000 integers would compress to 2001 un-
signed integers, each one (other than the initial zero/non-zero indicator) equal
to 50, which Huffman-coding would further reduce to 2001 bits. Compared to
an equivalent binary-encoded 1-bit boolean field of the original field, this is a
reduction of 98%, and a run-length encoding pass would reduce this further still.
Such a test is an atypical and artificial pattern which may not reflect real-world
usage, but shows the maximum potential effectiveness of the above compression
strategy.

5.3 Intersection (reducing multiple jump-counting skipfields to a
singular skipfield)

Multiple jump-counting skipfields can be intersected using a “tail-chasing” tech-
nique. The time complexity of this technique is roughly O(n) amortized, where n
is the number of non-skipped elements in the intersected output skipfield plus the
total number of skipblocks which do not overlap entirely in the input skipfields.
All skipfields being intersected are processed sequentially and synchronously,
starting from index 0. The current skipfield index being processed for all skip-
fields is stored as I. Steps are as follows:

1. If the node values in every skipfield at index I are zero, a zero is written to
the output (intersected) skipfield at index I and I is incremented by one. This
repeats until a non-zero value is encountered in any of the input skipfields, or
until the end of all skipfields is reached.

2. Once a non-zero value is encountered, we take that value, add it to I and store
the result as W - this is the index number of the node after the skipblock which
has been encountered. We then copy all skipfield node values from the skipfield
which contained the non-zero value to the output skipfield, starting from index
I and continuing until index W is reached.

3. We then check the values of all nodes at index W in the other skipfields to
see if they are also zero. If they are, we set the output skipfield node at index
W to zero, set I to W + 1 and go back to step 1.

4. Otherwise (if a non-zero value is found) we take the first skipfield which con-
tained a non-zero value at W , subtract the value of the node at W − 1 from W
and store this as S.

5. We then take the value of the node at index S and add it to S - this is the
index of the node after the skipblock. We then take the value of the node in the
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output skipfield at index I and store it as T .

6. We add one to T and copy it to the output skipfield at index W , then add
one to W , repeating until W is equal to S.

7. Finally, we copy the value of T to the output skipfield at index I, and go back
to step 3.

5.4 Parallel Computing

The jump-counting algorithms are principally serial in design and as such are
unlikely to be of significant use in parallel architectures such as CUDA[9]. Data
processing in such environments is typically performed on many elements at once
rather than iterating over single elements sequentially, and sequential iteration
is where the jump-counting skipfield’s performance advantages are found. But
neither does the pattern necessarily hinder parallel usage. As an example, if one
were to use an advanced jump-counting skipfield instead of a boolean skipfield
to indicate inactive data in a parallel-processing environment, this would not
prevent a “compact” operation utilising an exclusive[10] or inclusive[11] scan.
One would merely predicate any non-zero value in the skipfield as a zero, and
any zero value as a one in the context of the scan. (note: the simple jump-
counting pattern would not be usable in this context as nodes within skipblocks
in the simple pattern may contain zero values).

6 Summary

Given an appropriate use case, implementing a “jump-counting” rather than a
boolean skipfield will reduce iteration times substantially where multiple con-
secutive skipped elements are common. The pattern will typically exhibit better
performance in a multiple-memory-block situation where block-sizes can be at-
tenuated to allow for a smaller bit-depth in the skipfield nodes; for example,
lowering maximum memory-block size to 65535 elements will allow for the use
of a 16-bit skipfield. However it can be expected to still show strong perfor-
mance benefits with larger singular-memory-block situations requiring higher
bit-depths, particularly if multiple consecutive erased elements are common.

The pattern can be applied in any scenario where a singular binary aspect
of each element in a sequence decides whether or not to skip that element. This
can include available/busy, erased/non-erased or any other two-value choice. It
is expected to be of greatest use in video game engines, where boolean fields
are traditionally used in this capacity. The cost for erasure in a jump-counting
skipfield is low and very close to that of a boolean skipfield’s in the majority
of scenarios. Even in scenarios where element erasure is infrequent, a boolean
skipfield utilizing a lower bit-depth will have lower iteration performance due to
the increased complexity and branching within the iteration code, even though
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implementing a boolean skipfield requires much less advanced code in other
areas.

For the majority of game development scenarios, element insertion, erasure
and iteration over elements are among the most common per-frame activities,
and so any substantial performance increase in those areas can be expected to
yield overall performance improvements.
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