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Abstract

Modulated jump-counting patterns transform low and high-complexity jump-

counting patterns [1] [2] into a form which may be more appropriate for some

types of computational work. They allow for skipping different types of elements

based on preset parameters. This includes elements with binary characteristics

and greater-than-binary characteristics eg. 3 or more types. Familiarity with

both the low and high-complexity jump-counting patterns is assumed in the

reader of this paper.

1 Introduction

The low-complexity and high-complexity jump-counting patterns are replacements for

boolean skipfields which have greater iterative efficiency. These have been used in

the colony [3] container. These patterns are well-established in their own papers and

require no further explanation here, however if one is unfamiliar with them they will

need to familarise themselves before continuing reading.

Modulated jump-counting patterns take the normally empty space within jump-

counting skipfields created by un-skipped elements in those patterns, and creates skip-

blocks for those areas as well as for the skipped areas. This enables the use of these
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skipfields to not just skip one specific type of element, but to selectively skip either

type.

A further extension of these patterns allows for skipfields which support more than

two states ie. non-binary skipfields. This can, for example, enable selective processing

of one or more types out of potentially millions of different element states. We will

first cover the more familiar binary implementation of a skipfield, then move on to

non-binary skipfields.

2 Definitions

For the purposes of this document, the following terms are defined:

LCJC: Acronym of ’low complexity jump-counting’.

HCJC: Acronym of ’high complexity jump-counting’.

MJC: Acronym of ’modulated jump-counting’.

Skipfield: An array of integers used to skip over certain objects in an accompa-

nying data structure during iteration or processing. Denoted by S in equations.

Node: A single integer within a skipfield, corresponding to some external object

which may or may not be skipped, depending on the state of the skipfield. For a

boolean skipfield this would be 0 or 1, while for a jump-counting skipfield this can be

any non-negative integer.

Skipblock: A contiguous sequence of skipped nodes within a skipfield. In the fol-

lowing LCJC skipfield:

0 4 0 0 4 0 0 0 1 0
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all of the nodes from the first ‘4’ to the second ‘4’ are part of a skipblock. In addition

the ‘1’ is also a skipblock (of length = 1). In a boolean skipfield, any node which is

‘1’ instead of ‘0’ is part of a skipblock. For example:

1 1 1 0 0 0 1 1 0 0

Here the first 3 nodes are part of a skipblock of length 3. The 7th and 8th nodes are

part of a skipblock of length 2.

Run: Another name for a contiguous sequence of objects which share a particular

property eg. green objects vs red objects, or active objects vs erased objects.

Runblock: Another name for a skipblock, modified thus because all areas of a MJC

skipfield are alternatively skippable or traversable, hence the name ’skipblock’ becomes

misleading.

Start node: The first node in any skipblock/runblock. In the LCJC skipfield above

the first ‘4’ is a start node, as is the ‘1’. In the Boolean skipfield above both the first

and seventh nodes are start nodes. The index of this node is denoted by s in equations.

End node: The last node in any skipblock/runblock. In the LCJC skipfield above

the second ‘4’ is a start node, as is the ‘1’. In the Boolean skipfield above the third

node is an end node, as is the 8th. The index of this node is denoted by e in equations.

Middle node: Any node in a skipblock/runblock which is not a start or end node.

In the LCJC skipfield example above the third and fourth nodes are middle nodes. In

the Boolean skipfield example above only the second node is a middle node.

Current node: The node currently being modified during processing. The index

of this node is denoted by i in equations. Zeroth node: A node occurring before the

skipfield which denotes the type of the first runblock in the skipfield, or ’type descrip-
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tor node’. Detailed in the following sections. Back node: A node occurring after the

skipfield which denotes the type of the last runblock in the skipfield. Another ’type

descriptor node’. Detailed in the following sections.

3 Binary modulated skipfields

Take the LCJC skipfield below:

2 2 0 0 0 5 0 0 0 5

The equivalent binary modulated LCJC skipfield would be:

1 2 2 3 0 3 5 0 0 0 5 1

The first thing you will notice is that all previously unskipped areas eg. nodes 3-5,

now have their own skipblocks. You will also note that there is now both a leading

and trailing ’1’ on the skipfield. For the remainder of this paper we describe these as

being the ’zeroth node’ and ’back node’ respectively. They are ’type descriptor nodes’.

The zeroth node describes the type of the first skipblock - 0 for one type of object

(which could be erased objects, or something else), 1 for the opposite type. Likewise

the back node describes the type of the last skipblock and is used for iterating in

reverse (if reverse iteration is undesired, this node may be omitted).

How is this useful? Well, imagine if you will a scenario where we are not using

jump-counting skipfields for, as is common, skipping erased or otherwise de-activated

objects. Think instead of the colours red and green. We want to skip red objects,

but not green objects. This is easily accomplished with a regular LCJC/HCJC. But

consider the opposite situation - if, while using the same skipfield, we decide that we

only want to process red objects now, we cannot do so while achieving O(1) iteration

time.

To do that, we need a modulated jump-counting skipfield. Consider the modulated

LCJC below:
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objects : r r r r g g g r r g

skipfield : 1 4 0 0 4 3 0 3 2 2 1 0

Here we have assigned 1 to red, and 0 to green. The zeroth node of the skipfield

describes a red initial skipblock, and the back node describes a green final skipblock.

In between those two skipblocks we have another green and another red skipblock.

Here the binary modulated LCJC/HCJC gives the ability to choose which type of

object we are interested in skipping over.

Using the example above, if we decide to iterate over red objects, we know from

the zeroth node that the first skipblock is red, and so we iterate over it rather than

skipping it. Since this is a binary sequence, we know that a green skipblock must follow

a red skipblock, so the next skipblock is skipped over using it’s start node’s value as

the length of the run to skip, in standard LCJC/HCJC jump-counting fashion. At

this point we will use the term ’runblock’ instead of skipblock since these areas are not

necessarily skipped, depending on which type of object one is interested in iterating

over.

3.1 Forward iteration

1. We establish 0 as denoting one type of object while 1 denotes the other. This

is the type number. We decide which type of object to we wish to iterate over,

and set t to that type’s number.

2. To initialise our iterator, we set the current skipfield index (i) to 1, and read the

zeroth node’s value.

3. If the zeroth node is not equal to t, the first run in the skipfield is of objects we

wish to skip over, so we add the value of the skipfield node at index 1 to i.

4. We then read the skipfield node’s value at index i, add 1 to it and store the

result as j. Now the iterator is in the beginning position and we are ready for

iteration, as follows:
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5. We add 1 to i.

6. If i = j, we read the skipfield at index i, add this to i, then re-read the skipfield

at the new index i, add i to it and store the result as j.

7. To iterate again we return to step 5.

In pseudocode this can be expressed as follows (where S denotes the skipfield and

i the current index into the skipfield):

// Iterator initialisation:

i := 1 (1)

IF (S0 ! = t) THEN i := 1 + S1 (2)

j := i + Si (3)

// Single iteration:

i := i + 1 (4)

IF (i = j) THEN { (5)

i := i + Si (6)

j := i + Si } (7)

You will notice that although per-iteration this equation involves fewer reads of

the skipfield than the unmodulated LCJC/HCJC patterns, it also contains more in-

structions and a branch, which the unmodulated patterns do not have (LCJC/HCJC

iteration has no branches and is only 2 instructions). This means it could be slower

than unmodulated LCJC/HCJC iteration depending on the platform.

It is important to note that increased iterative performance over the unmodulated

LCJC/HCLC skipfields is not the purpose of a modulated skipfield; the purpose is to

enable the ability to choose which types of elements we wish to skip over, as opposed
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to having one predetermined type.

One might question the advantage of a MJC over a boolean skipfield, given that

the latter can also be used for this sort of selective processing and its iteration also

involves branching. The advantages are (a) a MJC skipfield involves no looping and

hence (b) iteration skips the skipped elements in O(1) time, as opposed to a boolean

skipfield’s undefined time complexity for the same operation.

For example, a single iteration over a boolean skipfield could involve 1 or 1000

branching instructions depending on the state of the skipfield and how many skipped

objects there are between any two unskipped objects. A MJC skipfield will only ever

invoke 1 branching instruction between any two unskipped objects.

3.2 Reverse iteration

1. t is set to the number of the type we wish to iterate over.

2. To initialise our iterator, we set the current skipfield index (i) to the index of

the back node (b) minus 1, and read the back node’s value.

3. If the back node is not equal to t, the last run in the skipfield is of objects we

wish to skip over, so we subtract the value of the skipfield node at index i from

i.

4. We then read the skipfield node’s value at index i, subtract that number from i

and store the result as j. Now the iterator is in the beginning position and we

are ready for iteration, as follows:

5. We subtract 1 from i.

6. If i = j, we read the skipfield at index i, subtract this from i, then re-read the

skipfield at the new index i, subtract this from i and store the result as j.

7. To iterate again we return to step 5.

In pseudocode this can be expressed as follows:
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// Iterator initialisation:

i := b− 1 (8)

IF (S0 ! = t) THEN i := i− Si (9)

j := i− Si (10)

// Single iteration:

i := i− 1 (11)

IF (i = j) THEN { (12)

i := i− Si (13)

j := i− Si } (14)

4 Non-binary modulated skipfields

Consider the problem of adding blue elements to our set of objects. Even if we modified

the binary above code to allow for 3 types of object instead of 2, we would still have

to assume a set sequence of runblocks in the skipfield - type 0 (green) followed by type

1 (red) followed by type 2 (blue), followed by type 0 etcetera. Otherwise alternating

between them does not work. For example the following sequence would be perfectly

valid:

objects : r r r r b b b g g r

skipfield : 1 4 0 0 4 3 0 3 2 2 1 0

But the following sequence would not work:

objects : r r r r g g g b b r

skipfield : 1 4 0 0 4 3 0 3 2 2 1 0

This is because blue does not follow the established sequence in the second example,

so therefore an iterator would assume that the green objects were blue and the blue

objects were green.
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There is a way around this, which is to utilise the upper or lower n number of bits

in each skipfield node, where n is the number of bits necessary to represent the total

number of different object types (eg. 2 bits in the example above). These bits would

describe the type of object in each runblock, and would be stored in the start and end

nodes.

This reduces the potential length of a run, based on the bit-depth of the skipfield.

For example, a skipfield made up of unsigned 8-bit integers would be able to describe

runs of up to 255 objects, but if 2 of those bits are used to describe the type of object

in the run, the maximum length of the described run is 63 (note: though in fact, since

a runblock cannot be of length 0, we could simply assume that the value represented

by all start and end nodes has 1 subtracted from it, thereby increasing the maximum

run-length to 64 in this example).

In this case there is no need for zeroth or back nodes in the skipfield to describe

the type of object in the first and last runblocks, as is necessary in the binary MJC

patterns. These are already be encoded in the start and end skipfield nodes for both

of those runblocks.

If we interpret the lower 2 bits in our skipfield nodes as the element type for the

above example, this shifts the actual run-length numbers up by 2 bits, resulting in the

latter:

objects : r r r r g g g b b r

skipfield : 16 0 0 16 12 0 12 8 8 4

Once we add the element type data into the lower 2 bits (0 = green, 1 = red, blue

= 2), this becomes:

objects : r r r r g g g b b r

skipfield : 17 0 0 17 12 0 12 10 10 5

This means that our red, green and blue runblocks can follow any possible sequence.

Of course, this adds overhead to both the writing and reading of the skipfield due to

the shifting and masking operations necessary to separate the object type numbers

from the run-length numbers. But, dependent on the situation this trade-off could be
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worth the additional instructions.

The potential number of different object types can be as large as one has room

to store in the skipfield integer type. A 32-bit unsigned integer skipfield could, for

example, sacrifice 10 bits per node in order to be able to describe 1024 different types

of element, while retaining a maximum runblock length of 4194304. While a 16-bit

unsigned integer skipfield could sacrifice 3 bits per node in order to describe 8 different

types of element while retaining maximum runblock lengths of 8182.

4.1 Memory-saving measures

Since the non-binary modulated pattern describes the object type at the beginning

and end of each run, it is possible to have several sequential runblocks of the same

object type. For example, in the non-binary modulated pattern the following LCJC

skipfield is completely valid:

objects : r r r r r r r b b r

skipfield : 17 0 0 17 12 0 12 10 10 5

In the binary modulated pattern this would not be possible since it would be

assumed that we are switching object type at the end of each run. What this means is,

for the non-binary modulated pattern we can use a lower bit-width for the skipfield type

and simply have multiple sequential runblocks when the runblock length encountered

is larger than the skipfield node’s bit-width can describe.

If we have a skipfield bit-width of 8 bits for example, and we use 2 of those bits

to describe the object type for each runblock, that limits each run to 63 objects,

however we could place several runblocks in a row to effectively create runs which are

unlimited in length. This would increase the number of instructions incurred per full

iteration over the skipfield, but might reduce the size of the skipfield substantially, and

depending on the typical length of runs in a given scenario, may not affect performance

at all.
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5 Applications

It is expected that MJC skipfields would be most useful in the scenario where we wish

to iterate over all objects in a sequence at times, and over only certain types of objects

in that sequence at other times. An example could be a very specific form of multiset,

where only certain types of objects are to be selected a given point in time, but it is

also possible to iterate over all objects in the sequence.

6 Modification of singular skipfield nodes

Largely, skipfield modification follows the same rules that are already established in

the LCJC and HCJC pattern papers. Up until this point we have used LCJC patterns

to demonstrate the MJC pattern, but either can be used. It is merely easier to update

and describe the low-complexity variant, so that is what we will continue to use in this

section for the most part. Those familiar with the HCJC pattern can easily extrapolate

this information to create equivalent operations for that.

In addition, since non-binary MJC skipfields involve so many additional calcula-

tions, and since the layout is changed significantly by the requirement of needing to

storing object type information in the upper or lower bits of nodes, we will explain

node modification only in the context of a binary MJC skipfield. The reader is as-

sumed to be able to extrapolate this information to create equivalent operations for

the non-binary variant.

For a LCJC, one must know the location of the start or end node of the runblock

which contains the node we wish to change - either by having iterated over the skipfield

or some other method. All modification operations involve either splitting runblocks

(for middle nodes) or truncating runblocks. We’ll start with middle nodes.

6.1 Middle node modification

Take the following modulated binary LCJC skipfield:
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objects : r r r g g g g g r

skipfield : 1 3 0 3 5 0 0 0 5 1 1

Say we wish to change the 2nd node from red to green. At this point we subtract

the index of this runblocks start node from the current nodes index, to obtain the dis-

tance from the start node to the current node. We store this as j, then set the value

of the start node, and the node to the left of the current node, to j. In this case j is 1,

so we end up writing to the start node twice. We then set the current node’s value to 1:

objects : r g r g g g g g r

skipfield : 1 1 1 3 5 0 0 0 5 1 1

Lastly we subtract the index of the current node from the end node to find the

distance between the current node and the end node. We store this as k, then write

k to both the end node, and the node to the right of the current node. Again k is 1

here, so we write to the end node twice:

objects : r g r g g g g g r

skipfield : 1 1 1 1 5 0 0 0 5 1 1

The process is the same for a HCJC skipfield except that the middle nodes of the

two new runblocks on the left and right must be set to the sub-index of the middle

node in the context of the runblock (ie. the 2 + n pattern):

objects : r g r g g g g g r

skipfield : 1 1 1 1 5 2 3 4 5 1 1

For the above modification example there are no middle nodes in the left or right

runblocks resulting from the runblock split, so nothing changes in that area. However

if we were to change the 7th node from green to red, the result would be as follows:
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objects : r g r g g g r g r

skipfield : 1 1 1 3 3 2 3 1 1 1 1

6.2 Start node modification

In this case, for a binary modulated skipfield, we are truncating the size of the runblock

which the start node belongs to, and increasing the size of any adjacent runblock to

the left. There are four possible situations here:

1. Node is at start of skipfield and is equal to 1.

2. Node is at start of skipfield and is not equal to 1.

3. Node is not at start of skipfield and is equal to 1.

4. Node is not at start of skipfield and is not equal to 1.

We’ll deal with each of these in turn:

6.2.1 Node is at start of skipfield and is equal to 1

In this case we have a single-node runblock. We invert the zeroth node, take the value

of the right-hand node, add 1 to it, and set the current node to that value. We then use

the current node’s value as the index of the end node in the right-hand runblock, and

set that node to the same value as the current node. For example, with the skipfield

below:

objects : r g r g g g r g r

skipfield : 1 1 1 3 3 2 3 1 1 1 1

Changing the 1st node of the skipfield to green results in the following:

objects : g g r g g g r g r

skipfield : 0 2 2 3 3 2 3 1 1 1 1

In equation form this is:
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S0 =!(S0) (15)

e = S2 (16)

Se = S1 = S2 + 1 (17)

6.2.2 Node is at start of skipfield and is not equal to 1

We invert the zeroth node, take the value of the current node, subtract 1 and store

the result as j. We use the value of the current node as the index of the end node, and

set both the end node and the right-hand node to j. For example, with the skipfield

below:

objects : r r r g g g r g r

skipfield : 1 3 0 3 3 0 3 1 1 1 1

Changing the 1st node of the skipfield to green results in the following:

objects : g r r g g g r g r

skipfield : 0 1 2 2 3 0 3 1 1 1 1

In equation form this is:

S0 =!(S0) (18)

j = S1 − 1 (19)

e = S1 (20)

Se = S1 = j (21)

6.2.3 Node is not at start of skipfield and is equal to 1

In this case we have a single-node runblock in between two runblocks. We take the

value of the left-hand node and subtract it from the current node’s index to find the

index of the lefthand runblock’s start node (s). We then take the value of the right-
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hand node and add it to the current node’s index to find the index of the right-hand

runblocks end node (e). Finally, we set the values of s and e to the value of s plus the

value of e plus 1. For example:

objects : r g g g g g r g r

skipfield : 1 1 5 0 0 0 5 1 1 1 1

Changing the 7th node above to green results in the following:

objects : r g g g g g g g r

skipfield : 1 1 7 0 0 0 5 1 7 1 1

In equation form this is:

s = i− Si−1 (22)

e = i + Si+1 (23)

Se = Ss = Se + Ss + 1 (24)

6.2.4 Node is not at start of skipfield and is not equal to 1

Here we take the current node’s value, subtract 1 from it and store this as j. We add

j to the current node’s index to find the index of this runblocks end node (e), then

set both the right-hand node and the end node to j. Finally we take the value of

the left-hand node, subtract that from the current node’s index to find the index of

the left-hand runblocks start node (s). We then set both the current node and the

left-hand runblocks start node to the value of the left-hand runblocks start node plus

1. For example:

objects : r r r g g g r g r

skipfield : 1 3 0 3 3 0 3 1 1 1 1

Changing the 4th node of the skipfield below to red results in the following:
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objects : r r r r g g r g r

skipfield : 1 4 0 3 4 2 2 1 1 1 1

In equation form this is:

j = Si − 1 (25)

e = i + j (26)

Si+1 = Se = j (27)

s = i− Si−1 (28)

Ss = Si = Ss + 1 (29)

6.3 End node modification

In this case, for a binary modulated skipfield, we are truncating the size of the runblock

which the end node belongs to, and increasing the size of any adjacent runblock to the

right. There are four possible situations here:

1. Node is at end of skipfield and is equal to 1.

2. Node is at end of skipfield and is not equal to 1.

3. Node is not at end of skipfield and is equal to 1.

4. Node is not at end of skipfield and is not equal to 1.

6.3.1 Node is at end of skipfield and is equal to 1

In this case we have a single-node runblock. We invert the back node, take the value

of the left-hand node, add 1 to it, and set the current node to that value. We then

subtract the value of the left-hand node from the current node to find the index of

the left-hand runblocks start node. We then set that node to the same value as the

current node. For example, with the skipfield below:
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objects : r g r g g g r g r

skipfield : 1 1 1 3 3 2 3 1 1 1 1

Changing the last node of the skipfield to green results in the following:

objects : g g r g g g r g g

skipfield : 0 2 2 3 3 2 3 1 2 2 0

In equation form this is:

Sb =!(Sb) (30)

s = i− Si−1 (31)

Ss = Si = Si−1 + 1 (32)

6.3.2 Node is at end of skipfield and is not equal to 1

We invert the back node, take the value of the current node, subtract 1 and store the

result as j. We then subtract j from the index of the current node to find the start

node, and set both the start node and the left-hand node to j. Finally we set the

current node to 1. For example, with the skipfield below:

objects : r r r g g r g g g

skipfield : 1 3 0 3 2 2 1 3 0 3 0

Changing the last node of the skipfield to green results in the following:

objects : r r r g g r g g r

skipfield : 1 3 0 3 2 2 1 2 2 1 1

In equation form this is:
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Sb =!(Sb) (33)

j = Si − 1 (34)

s = i− j (35)

Ss = Si−1 = j (36)

Si = 1 (37)

6.3.3 Node is not at end of skipfield and is equal to 1

The procedure here is the same as with the start node. We have a single-node runblock

in between two runblocks. We take the value of the left-hand node and subtract it

from the current node’s index to find the index of the lefthand runblock’s start node

(s). We then take the value of the right-hand node and add it to the current node’s

index to find the index of the right-hand runblocks end node (e). Finally, we set the

values of s and e to the value of s plus the value of e plus 1. For example:

objects : r g g g g g r g r

skipfield : 1 1 5 0 0 0 5 1 1 1 1

Changing the 7th node above to green results in the following:

objects : r g g g g g g g r

skipfield : 1 1 7 0 0 0 5 1 7 1 1

In equation form this is:

s = i− Si−1 (38)

e = i + Si+1 (39)

Se = Ss = Se + Ss + 1 (40)
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6.3.4 Node is not at end of skipfield and is not equal to 1

Here we take the current node’s value, subtract 1 from it and store this as j. We

subtract j from the current node’s index to find the index of this runblocks start node

(s), then set both the left-hand node and the start node to j. Finally we take the

value of the right-hand node, add that to the current node’s index to find the index

of the right-hand runblocks end node (e). We then set both the current node and the

right-hand runblocks end node to the value of the right-hand runblocks end node plus

1. For example:

objects : r r r g g g r g r

skipfield : 1 3 0 3 3 0 3 1 1 1 1

Changing the 6th node of the skipfield below to red results in the following:

objects : r r r g g r r g r

skipfield : 1 3 0 3 2 2 2 2 1 1 1

In equation form this is:

j = Si − 1 (41)

s = i− j (42)

Si−1 = Ss = j (43)

e = i + Si+1 (44)

Se = Si = Se + 1 (45)

7 Modification of multiple consecutive skipfield nodes

at once

This becomes more complicated. If we have a range, say nodes 1-4 of the following

LCJC sequence:
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objects : r r r g g g r g r

skipfield : 1 3 0 3 5 0 0 0 5 1 1

And we wish to convert this range to green, this is relatively simple - the first 3

nodes are a runblock of red, while the 4th node is the start node of a runblock of

green. We negate add the number at node 1 to the number at node 4, set the 1st and

8th nodes to that new number, and the conversion is complete. Since the start of the

range is the 1st node, we would also need to change the value of the zeroth node from

1 to 0.

However if we wished to convert nodes 2-5 of the above sequence instead, there

is no way to establish from the values of the nodes themselves, where the beginning

and end of those runblocks are. In this case, we would have to iterate from the very

beginning of the container in order to locate the runblocks contained by the range,

and modify them that way.

Alternatively one might modify the LCJC slightly so that middle nodes are always

0. This is not hard to do, but involves one or two additional instructions (see the

Parallel Processing section of the low complexity jumnp-counting skipfield paper). In

this case we could assume any two adjacent non-zero nodes are start and end nodes

respectively of two separate runblocks, while zero nodes are always middle nodes. We

could then scan to the left and right of the beginning and end nodes of the range to

find runblocks.

One might think that a HCJC skipfield version would be better in this scenario:

objects : r r r g g g r g r

skipfield : 1 3 2 3 5 2 3 4 5 1 1

But again it is impossible to establish whether the beginning and end nodes of a

given range are start/middle/end nodes of the runblock, without scanning to the left

and right (to find values which do not match the Sx = Sx−1 + 1 pattern of the HCJC

middle nodes. In either case, the modification of multiple consecutive nodes in a MJC

skipfield is non-trivial.
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However, if we specifically use iterators in the form described in the iteration section

and retain i (the current index), t (the object type which we are interested in iterating

over), s (the index of the current runblocks start node) and j (the index of the next

runblocks start node), and use two of these iterators as a range for modifying nodes,

it is possible to work out the beginning and end of each runblock involved and modify

multiple consecutive nodes in this way.

8 Conclusion

It is expected that this pattern will find use in some form of data processing, though

it is difficult to forecast what exactly. The non-binary variant of the pattern shows

more promise as it is more flexible and also can save significant amounts of skipfield

memory though bit-depth reduction. However in applications where types have a

singular dominant binary characteristic, it would be of use in terms of processing

both types of elements at times, then selectively processing only one type of element

at other times. In those cases it would provide O(1) skipping of the other type of

element, compared to a boolean skipfield, whose problematic aspects in terms of cache,

branching and branch prediction [4] [5] [7] [6] have been fully examined in the low and

high-complexity jump-counting papers.
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